Instructions for Installation and Operation

INTEGRAmotorTM

Brushless DC Motors and Gearmotors with Built-In PWM Speed Control

Direct Drive Motors 22B2BEBL/SR 22B4BEBL/SR

Right-Angle Gearmotors × 22B4BEBL/SR-3N

 Parallel Shaft Gearmotors

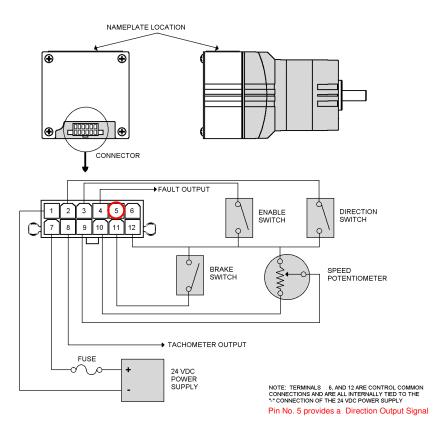
 ×
 22B2BEBL/SR-D3

 ×
 22B2BEBL/SR-D4

 ×
 22B3BEBL/SR-Z2

 ×
 22B3BEBL/SR-Z3

 ×
 22B2BEBL/SR-Z4


www.bodine-electric.com

Literature No. 074 01034.D (MW)

QUICK REFERENCE

IMPORTANT

Read this manual completely and carefully. Pay special attention to all warnings, cautions, and safety rules. Failure to follow the instructions could produce safety hazards which could injure personnel or damage the control, motor, or other equipment. If you have any doubts about how to connect the control or motor, refer to the detailed sections of this manual.

CONTENTS

This manual contains the basic information needed to install and operate a Bodine INTEGRAmotorTM brushless DC motor & control system. This manual does not profess to cover all details or variations in equipment, nor to provide for every possible contingency associated with installation, operation, or maintenance. No warranty of fitness for purpose is expressed or implied. Should further information be desired or should particular problems arise which are not covered sufficiently for the user's purpose, the matter should be referred to the Bodine Electric Company.

	PAGE
	2
QUICK REFERENCE	2
PRODUCT SPECIFICATIONS	4
IMPORTANT SAFETY PRECAUTIONS	5
INSTALLATION	6
Step 1 – Examine Before Installation	6
Step 2 – Mount the Control	6
Step 3 – Make Electrical Connections	10
Step 3a – Make Cable	10
Step 3b – Connect Remote Control Devices to Cable	10
Step 3c – Ground the INTEGRAmotor [™]	14
Step 3d – Connect Fuse	14
Step 3e – Connect DC Power Supply to Cable	14
Step 3f – Plug Cable into INTEGRAmotor [™]	14
OPERATION	15
Step 4 – Check System Before Starting	15
Step 5 – Operate the INTEGRAmotor [™]	15
TROUBLESHOOTING	19
DECLARATION OF CONFORMITY	22
WARRANTY	23

Copyright 2010. Bodine Electric Company. All Rights Reserved. Printed in U.S.A.

PRODUCT SPECIFICATIONS

Ambient Rating: +25 °C (+77 °F) Environmental Protection: IP-00

SPECIFICATIONS OF DIRECT DRIVE MODELS

			МОТО	R OUTPUT		CONTRO	DL INPUT
Model Number	Frame Type	Weight (Ibs)	Speed (rpm)	Torque (oz-in)	HP	Volts (VDC)	Cont. Amps
3802	22B2BEBL/SR	2.5	200 to 2500	25	1/16	24	4.0
3804	22B4BEBL/SR	3.5	200 to 2500	50	1/8	24	6.0

SPECIFICATIONS OF PARALLEL SHAFT MODELS

			GE/	ARMOTOR (DUTPUT		CONTRO	L INPUT
Model	Frame Type	Weight	Speed	Torque (Ib-	Gear	HP	Volts	Cont.
No.		(lbs)	(rpm)	in)	Ratio		(VDC)	Amps
N3826	22B2BEBL/SR-D3	3.8	33 to 417	5.8	6:1	1/16	24	4.0
3827	22B2BEBL/SR-D3	3.8	17 to 208	12	12:1	1/16	24	4.0
N3828	22B2BEBL/SR-D3	3.8	11 to 139	17	18:1	1/16	24	4.0
3829	22B2BEBL/SR-D3	3.8	7 to 83	29	30:1	1/16	24	4.0
N3834	22B2BEBL/SR-D3	3.8	3 to 42	40	60:1	1/16	24	4.0
N3835	22B2BEBL/SR-D4	3.8	2 to 28	40	90:1	1/16	24	4.0
3836	22B2BEBL/SR-D4	3.8	1 to 14	40	180:1	1/16	24	4.0
N3837	22B2BEBL/SR-D5	3.8	0.7 to 8	40	300:1	1/16	24	4.0
3857	22B3BEBL/SR-Z2	5.3	33 to 417	10	6:1	1/11	24	5.0
N3858	22B3BEBL/SR-Z2	5.3	17 to 208	20	12:1	1/11	24	5.0
N3859	22B3BEBL/SR-Z2	5.3	11 to 139	31	18:1	1/11	24	5.0
3860	22B3BEBL/SR-Z3	5.3	7 to 83	52	30:1	1/11	24	5.0
N3861	22B3BEBL/SR-Z3	5.3	3 to 42	95	60:1	1/11	24	5.0
N3862	22B2BEBL/SR-Z4	4.8	2 to 28	97	90:1	1/16	24	4.0
3863	22B2BEBL/SR-Z4	4.8	1 to 14	100	180:1	1/16	24	4.0
N3864	22B2BEBL/SR-Z4	4.8	0.7 to 8	120	300:1	1/16	24	4.0

SPECIFICATIONS OF RIGHT ANGLE MODELS

			GE/	ARMOTOR (DUTPUT		CONTRO	L INPUT
Model No.	Frame Type	Weight (Ibs)	Speed (rpm)	Torque (lb-in)	Gear Ratio	HP	Volts (VDC)	Cont. Amps
N3865	22B4BEBL/SR-3N	5.4	3 to 42	37	60:1	1/8	24	6.0
3866	22B4BEBL/SR-3N	5.4	5 to 62	37	40:1	1/8	24	6.0
N3867	22B4BEBL/SR-3N	5.4	10 to 125	35	20:1	1/8	24	6.0
3868	22B4BEBL/SR-3N	5.4	20 to 250	22	10:1	1/8	24	6.0
N3869	22B4BEBL/SR-3N	5.4	40 to 500	11	5:1	1/8	24	6.0

IMPORTANT SAFETY PRECAUTIONS

"The use of electric motors and generators, like that of all other utilization of concentrated power, is potentially hazardous. The degree of hazard can be greatly reduced by proper design, selection, installation, and use, but hazards cannot be completely eliminated. The reduction of hazard is the joint responsibility of the user, the manufacturer of the driven or driving equipment, and the manufacturer of the motor or generator."*

Please read through this operations manual in detail and observe those paragraphs with the safety alert symbol.

WARNING indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.

CAUTION indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury.

CAUTION used without the safety alert symbol indicates a potentially hazardous situation which, if not avoided, may result in property damage.

WARNING

- Do not touch printed circuit board (PCB) right after turning off power.
- Do not attempt to wire circuitry while power is on.
- Do not attempt to examine components and signals on the PCB while the INTEGRAMOTOR[™] is operating.
- Do not attempt to disassemble or modify internal components or wiring of the INTEGRAMOTOR[™].

* Standards Publication No. ANSI/NEMA MG-2, "Safety Standard for Construction and Guide for Selection, Installation and Use of Electric Motors and Generators." (Ref.: <u>www.nema.org</u>).

INSTALLATION

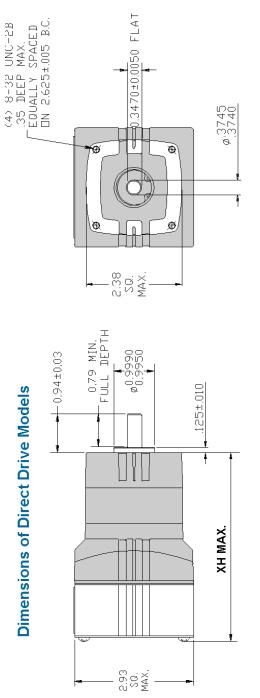
This product should only be installed by a qualified person familiar with its operation and associated hazards. The National Electrical Code (NEC), local electrical and safety codes, and when applicable, the Occupational Safety and Health Act (OSHA) should be observed to reduce hazards to personnel and property.

Step 1. Examine before installation

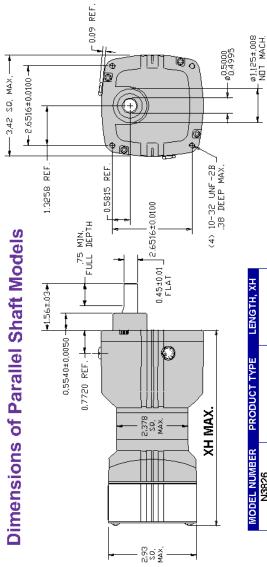
CAUTION

The PCB of the INTEGRAmotor[™] is vulnerable to static electrical charges. For this reason, the INTEGRAMOTOR[™] is packaged in an anti-static bag. Remove the INTEGRAmotor[™] from the bag only in an area protected from electrostatic discharges (ESD).

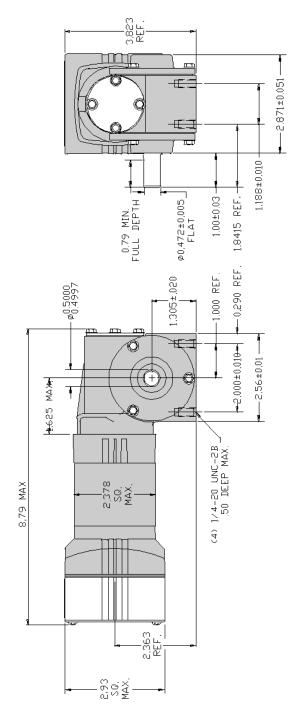
Check the items you received against the model numbers specified on your purchase order. The serial number is printed on an adhesive label on the top side of the control housing. The first four digits in the serial number correspond to the model number. Carefully examine the product for shipping damage. Parts errors should be reported to Bodine. Shipping damage claims should be made to the freight carrier.



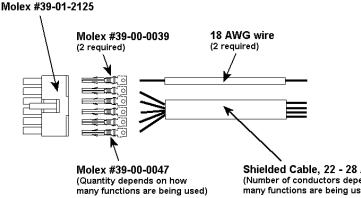
Do not connect the INTEGRAmotor[™] to the power supply if there is any sign of shipping damage.


Step 2. Mount the INTEGRAMOTOR[™]

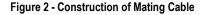
Install the INTEGRAMOTOR[™] onto a firm base by inserting screws into the four threaded holes in the mounting surface. See the following dimension drawings for location of mounting holes.


- INTEGRAmotors[™] without gearing can be mounted in any position. Our standard gearmotors are designed for universal horizontal mounting orientation.
- Consult the factory for suggestions if the gearmotors are mounted vertically. Surrounding air temperature can be from 0° C to $+25^{\circ}$ C (rated ambient temp.). Prevent liquid from dripping onto the INTEGRAmotorTM.
- Avoid environments that are humid or that have corrosive gas.
- Avoid locations near radioactive matter, flammable material, or by equipment that emits electromagnetic interference (EMI). Avoid mounting the INTEGRAmotorTM to a surface that experiences excessive
- vibration.

LENGTH, XH	4.727	5.687
PRODUCT TYPE	22B2BEBL/SR	22B4BEBL/SR
MODEL NUMBER	3802	3804

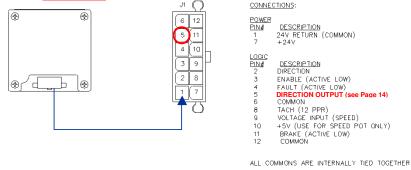

LENGTH, XH	6.639					6 630	60.0		7.443		5 2 A 2		7 063	000° 1
PRODUCT TYPE	22B2BEBL/SR-D3				10-02/ 1020606		22B3BEBL/SR-22			22B3BEBL/SR-Z3		22B2BEBL/SR-Z4		
MODEL NUMBER	N3826	3827	N3828	3829	N3834	N3835	3836	3857	N3858	N3859	3860	N3861	N3862	3863

Dimensions of Right Angle Models


Step 3 – Electrical Connections

Step 3a – Make a Cable The INTEGRAmotor[™] has a single plug-in header for all electrical connections. Fig. 3 shows the location of this header. The mating connector is supplied in the packaging of the INTEGRAmotor[™], but the user must attach wires to that connector. It is recommended that the wires used to connect the INTEGRAmotor™ to the 24V power supply be less than 12 feet long. Although this restriction doesn't apply to the wires for the logic connections, it is recommended that shielded cable be used if the logic wires are longer than 5 feet. It is also recommended that the power wires be separate from the shielded cable used for logic connections. If it is desired for the power wires to be shielded, then a separate shielded cable should be used for the power and logic connections.

Shielded Cable, 22 - 28 AWG wire (Number of conductors depends on how many functions are being used)



Step 3b – Connect Remote Control Devices to Cable

CAUTION

The printed circuit board (PCB) of the INTEGRAMOTOR[™] is vulnerable to electrostatic discharges (ESD). Do not contact the PCB unless precautions are followed to prevent ESD.

Rear End of INTEGRAmotor

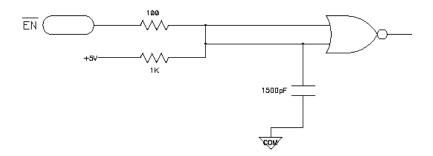


Figure 3 - Functions of Connector Terminals

The INTEGRAmotorTM can be connected for manual operation with switches and a speed potentiometer, as shown in Fig. 1, or it can be connected for remote operation from a programmable logic controller (PLC) or other control device.

DIRECTION INPUT (Terminal 2) - This input is normally high, pulled up to the internal 5V reference. If left high, rotation of the motor shaft will be counterclockwise (CCW) looking at the motor shaft (clockwise for parallel shaft gearmotors having an odd number of gearing stages). To reverse motor rotation, pull the input low. It can be pulled low by either connecting it to a switch to one of the common terminals (Terminals 6 and 12), as shown in Fig. 1, or by connecting it to an open collector output from a PLC or other control device. Note that it is not recommended to change direction while the INTEGRAMOTOR[™] is running. It should be brought to a stop first, and then reversed. A schematic diagram is shown in Fig. 4.

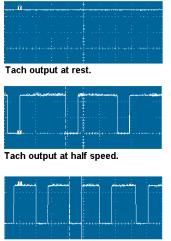

ENABLE INPUT (Terminal 3) – This input is normally high, pulled up to the internal 5V reference, and must be pulled low to allow operation of the INTEGRAMOTORTM. It can be pulled low by either connecting it to a switch to one of the common terminals (Terminals 6 and 12), as shown in Fig. 1, or by connecting it to an open collector output from a PLC or other control device. A schematic diagram for this input is shown in Fig. 4.

Figure 4 - Schematic diagram for Enable, Direction, and Brake Inputs

FAULT OUTPUT (Terminal 4) – The fault output is an open drain output connected directly to the main controller chip. It can be connected to a maximum of 12 VDC with a 10.0k ohm, 1/8 Watt resistor. The fault output will switch low to indicate at least one of the following conditions: (1) the controller is disabled because the enable input is high, (2) a shutdown has occurred because there is less than 20 VDC applied to the power input of the INTEGRAMOTORTM (undervoltage lockout), (3) a shutdown has occurred because of an invalid combination of commutation sensor signals, or (4) a shutdown has occurred because of an overcurrent from the controller chip (not the motor windings).

TACHOMETER OUTPUT (Terminal 8) – This output is normally high, pulled up to the internal 5V reference. It can be connected to an external device to monitor the speed of the INTEGRAMOTORTM. The output is a negative pulse that goes from high to low, as seen in Fig. 5. Note that this is not the same as the square wave output of a typical encoder. The active portion of the signal, that part at common, has a fixed width of 0.8 msec, while the high portion of the signal will change width based on the speed of the INTEGRAMOTORTM. Twelve pulses are produced for each revolution of the motor shaft (not the same as the driveshaft on a geared INTEGRAMOTORTM). To calculate the resolution of the tach output with respect to the driveshaft of a geared INTEGRAMOTORTM, multiply the gear ratio by 12. No external pull-up resistor is necessary if the remote control device operates with 5V supply. The tach output will work with supply voltages up to 24 VDC with a user-supplied 10k pull-up resistor, per Figure 6.

Tach output at full speed.

Figure 5 - Waveform of Tach Output

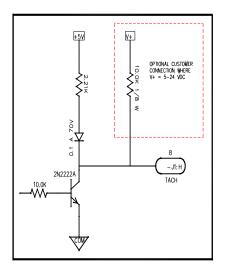


Figure 6 – Schematic diagram of Tach Output

SPEED SIGNAL INPUT (Terminal 9) – Connect a remote analog voltage signal to terminal 9. The drive will accept a 0 – 5 VDC signal. This signal does not have to be isolated since the 24 VDC power supply already isolates the INTEGRAMOTORTM from the AC line. Alternatively, a speed potentiometer can be connected to the drive as shown in Fig. 1 with the wiper connected to terminal 9 and the two end terminals of the speed pot connected to terminals 10 and 12. Since the speed pot acts as a voltage divider, the exact value is not critical, but a 10k ohm potentiometer is recommended. A schematic diagram for the speed signal input is shown in Fig. 7. A typical response curve, showing the relationship between the rotor speed of the INTEGRAMOTORTM to the voltage of the speed signal, is shown in Fig. 11.

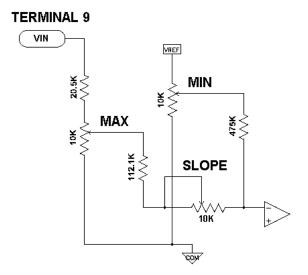


Figure 7 - Schematic diagram for speed signal input

BRAKE INPUT (Terminal 11) - This input is normally high, pulled up to the internal 5V reference. To dynamically brake the INTEGRAMOTORTM to a stop, pull the input low. It can be pulled low by either connecting it to a switch to one of the common terminals (Terminals 6 and 12), as shown in Fig. 1, or by connecting it to an open collector output from a PLC or other control device. Note that this function is not the same as a holding brake. It brings the INTEGRAMOTORTM to a quick stop, but will not hold it in place. The stopping time is a function of many variables and must be determined independently for each application. Some of the variables include the size of the INTEGRAMOTORTM, the gear ratio, the load inertia, and friction. Typical stopping performance is shown graphically in Fig. 8, with time divisions of 10 msec. A schematic diagram for the brake input is shown in Fig. 4.

DIRECTION OUTPUT (Terminal 5, page 11) – The direction output will be at +5V while the motor is turning CCW (looking at the motor shaft), and 0V when the motor is turning CW. This output will change state after the motor has been running in the new direction for at least 1/2 revolution. For gearmotors, the direction output will change after the motor has run $1/(2^*n)$ revolutions where n is the gear ratio. If the number of gear stages is odd, the direction output will be inverted as compared to motors with an even number of stages or no gearing. For compatibility with the new versions Bodine recommends existing users update their designs to leave pin 5 unterminated or connected to a logic input.

Step 3c – Ground the INTEGRAMOTOR[™]

There is no ground wire or ground terminal on the INTEGRAmotorTM. It must be grounded through the mounting points or a user-supplied ground wire must be connected to the frame.

Step 3d – Connect Fuse

The INTEGRAMOTOR[™] must be protected by a user-supplied fuse. In a system with multiple INTEGRAMOTORs[™], each one must be protected separately. Make sure the fuse is connected in series with the +24 volt lead of the power supply. See Fig. 1. The rating of the fuse is dependent on the amount of input current drawn by the control when the motor is operated at full load. Determine the fuse rating by multiplying the nameplate current rating of the INTEGRAMOTOR[™] by 1.25 and round the number up to the closest commercially available fuse rating. Note that maximum current is drawn by the INTEGRAMOTOR[™] in a condition where the INTEGRAMOTOR[™] is set for full speed and is overloaded, but not enough to cause a stall. Because of the nature of the PWM type drive, the current is actually lower when the INTEGRAMOTOR[™] is stalled.

Step 3e – Connect DC Power Supply to Cable

CAUTION

Use a power supply that is regulated to a voltage between 20 VDC and 28 VDC, and that has a current rating that matches the INTEGRAMOTORTM rating.

Step 3f – Plug Cable into INTEGRAmotor[™]

OPERATION

Step 4 – Check System Before Starting

WARNING

- Recheck all connections.
- Do not remove the cover over the electronics when the power is ON to avoid personnel injury caused by electrical shock.
- Do not attempt to install or remove the electrical connector when the power supply is turned on. Do not attempt to wire circuitry while power is on.

CAUTION

- Check that motor is securely mounted.
 Test INTEGRAMOTOR[™] unloaded first.
- Check all rotating members. Be sure keys, pulleys, etc. are securely fastened and safety guards are in place.
- Check for proper mounting and alignment of products, and verify safe loading on shafts and gears.

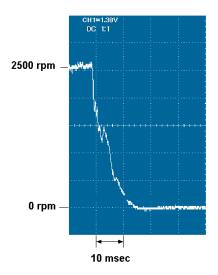
Step 5 – Operate the INTEGRAMOTORTM Assuming the INTEGRAMOTOR[™] has been connected as in Fig. 1, use the

following procedure to start the motor, adjust the speed, stop the motor, and reverse direction.

1) START AND ADJUST SPEED

- Set the ENABLE switch high, the SPEED POT to zero, and the BRAKE a) input high.
- Turn the 24 VDC power supply ON. b)
- Switch the ENABLE input low. C)
- Turn the SPEED POT to start rotation and to increase motor speed. d)

2) COAST TO STOP AND RESTART


- Switch the ENABLE input high to cut power to the INTEGRAMOTOR[™] and a) bring it to a slow stop.
- b) Turn SPEED POT to zero.
- C) Switch ENABLE input low.
- Turn SPEED POT to start rotation and increase speed. d)

3) BRAKE TO STOP AND RESTART

- a) Switch the BRAKE input low to dynamically brake the INTEGRAMOTOR[™] to a quick stop. Typical stopping time is shown in Fig. 8.
- b) Turn SPEED POT to zero.
- c) Switch BRAKE input high.
- d) Turn SPEED POT to start rotation and increase speed.

4) STOP, CHANGE DIRECTION, AND RESTART

- a) Stop the
- INTEGRAMOTOR[™] using either the ENABLE input or the BRAKE input, as described above.
- b) Turn the SPEED POT to zero.

Figure 8 - Typical Braking Time

c) Switch the DIRECTION input to change the INTEGRAMOTOR[™]'s direction of shaft rotation. Note the DIRECTION input should not be changed while the INTEGRAMOTOR[™] is running.

d) Restart the INTEGRAMOTORTM as described above.

5) STOP AND RESTART WITHOUT ZEROING SPEED SIGNAL

- a) Stop the INTEGRAMOTOR[™] using either the ENABLE input or the BRAKE input, as described above.
- b) Leaving the SPEED POT set at some speed higher than zero, restart the INTEGRAMOTOR[™].

Note that there is some overshoot of the set speed during the acceleration. as shown in Fig. 9. This is because the control in the INTEGRAmotor[™] does not have a ramping circuit. If overshoot is not acceptable in the application, then zero the speed signal before restarting, as described above or refer to Figure 14 on page 22.

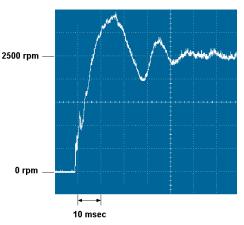


Figure 9 - Starting With Nonzero Speed Signal

6) INTERNAL ADJUSTMENTS

CAUTION

 The printed circuit board (PCB) of the INTEGRAMOTOR[™] is vulnerable to electrostatic discharges (ESD). Do not contact the PCB unless precautions are followed to prevent ESD.

Most applications should not require the user to remove the metal plate that covers the control PCB. However, certain situations (see "TROUBLESHOOTING" section) may require adjustment of the trim potentiometers on the PCB. The trim pots affect the response of the INTEGRAMOTORTM to the speed signal at Terminal 9. They are factory calibrated so that the INTEGRAMOTORTM will not run when the speed signal is 0V (with a little dead band to account for component tolerances) and so it will run at 2500 rpm (before any gear reduction) when the speed signal is 5V. See Fig. 10 for location of the trim pots and Fig. 11 for the response curve.

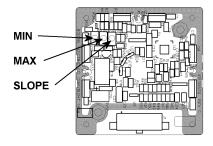
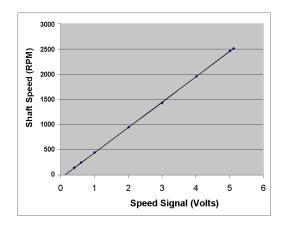
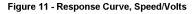




Figure 10 - Location of Trim Pots

7) IF PROBLEMS OCCUR

If the INTEGRAMOTORTM does not start promptly and run smoothly, refer to the "TROUBLESHOOTING" section. Make sure the INTEGRAMOTORTM isn't just overloaded. Fig. 12 shows the stall point for each size INTEGRAMOTORTM (without gearing).

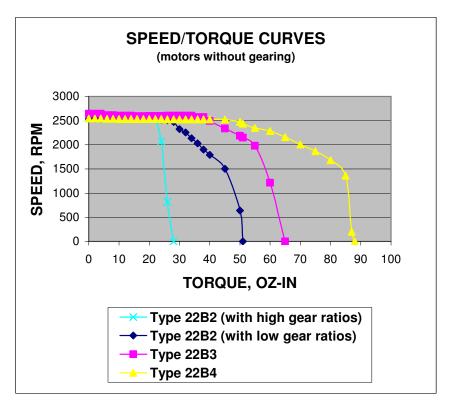


Figure 12 – Speed/Torque Curves showing effect of current limit

TROUBLESHOOTING

WARNING

- Do not remove the cover over the electronics when the power is ON to avoid personnel injury caused by electrical shock.
- Do not attempt to install or remove the electrical connector when the power supply is turned on. Do not attempt to wire circuitry while power is on.

If you encounter a problem, read all instructions and double-check the wiring. Even if the INTEGRAMOTOR[™] itself is definitely defective, it may be that another defective component in the system caused it to fail, in which case replacing the INTEGRAMOTOR[™] alone and not tending to the root cause of the failure may result in another damaged product. Figure 13 may assist in troubleshooting foreseeable problems which may occur during installation and operation.

If problems persist, contact your source of purchase or a Bodine Authorized Service Center and describe the problem in detail. Do not disassemble the product unless authorized by Bodine Electric Company. Performing unauthorized repairs will void the Warranty.

GENERAL EVALUATION – Knowing the circumstances under which the problem occurred can help to identify the root cause of the problem. The following are two questions you should ask yourself before tearing everything apart:

Has the system ever operated properly? If the system was just installed and hasn't worked right from the beginning, then it is very likely that something wasn't done correctly in the installation. Focus on incorrect wiring or incorrect programming of remote devices. On the other hand, if the system has been working for an extended period of time and just recently stopped working, then this would indicate that the system was initially installed properly but has somehow changed. Focus instead on failed components or deteriorated wiring.

Is the problem continuous or intermittent? If the problem always occurs and never goes away, then it would indicate something inherently wrong in the connections or a defective component. On the other hand, if the system operates properly most of the time and only occasionally does something wrong, then this might indicate loose connections or electrical noise interference.

ISOLATE THE PROBLEM – If there are no obvious indications that the INTEGRAmotorTM has failed (i.e. burn marks or smoke), then don't assume that it is the defective component.

Disconnect external devices – Disconnect all external devices to make sure they are not causing the problem. Leave only the power supply connected, to terminals 1 and 7, but make sure first that power is actually getting to the INTEGRAMOTORTM. Hard wire the ENABLE by connecting a short loop of wire between terminals 3 and 12. Hard wire the INTEGRAMOTORTM for full speed operation by connecting a short loop of wire between terminals 9 and 10. Connect nothing else to the INTEGRAMOTORTM. Now turn on the power and observe if the INTEGRAMOTORTM runs at full speed. If it does, then proceed to the next step. If it doesn't, then the INTEGRAMOTORTM probably needs service.

Reconnect external devices one at a time - Assuming the system worked okay with just the INTEGRAMOTORTM and power connected, reconnect and test each external device separately to identify which one is causing the problem. Remember that the problem may not be the device itself, but the wiring connecting it to the INTEGRAMOTORTM.

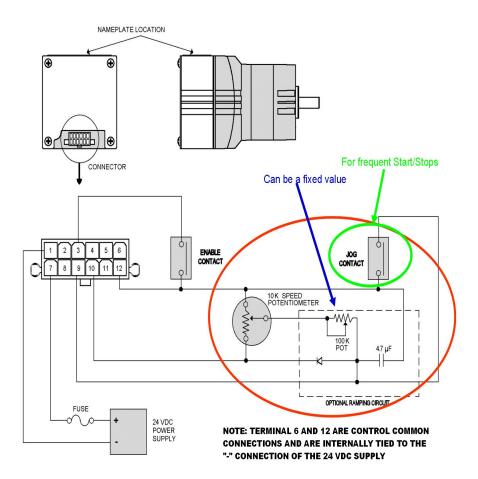

SYMPTOM	PROBABLE CAUSE	CORRECTIVE ACTION
Does not operate	Incorrect power supply wiring	 Check that power source is switched on. Check connections. Look for shorts and repair as required.
	Incorrectly sized power supply	 Replace power supply with unit having sufficient voltage and current capacity to provide 24V under full load
	Blown fuse	 Replace fuse.
	ENABLE input is high	 Correct any loose or open connection to ENABLE input Switch ENABLE input low if it is high.
	No speed signal	 Check if speed potentiometer, if used, is working properly. Check wiring for speed potentiometer or remote analog input signal Check that remote device, if used, is giving a signal to the INTEGRAMOTORTM.
	BRAKE input is low	 Correct any loose or bare wires that might be shorting BRAKE input to ground. Switch BRAKE input high if it is low.
	INTEGRAMOTOR [™] is overloaded	 Reduce load Replace INTEGRAMOTOR[™] with stronger model
	INTEGRAMOTOR™ is damaged	 Contact Bodine or an Authorized Service Center for assistance.
Operates, but in wrong direction	Direction input set wrong	Switch DIRECTION input.

FIGURE 13 - General problem evaluation method

FIGURE 13 - General problem evaluation method (continued)

SYMPTOM	PROBABLE CAUSE	CORRECTIVE ACTION
Operates, but speed can't be adjusted	Defective speed potentiometer	Replace speed potentiometer
	Incorrect wiring of speed potentiometer or remote speed signal	Check and correct connections
Operates, but won't come up to speed	INTEGRAMOTOR™ is overloaded	 Reduce load Replace INTEGRAMOTOR[™] with stronger model
	MAX trim pot set too low	 Adjust MAX trim pot
	Incorrectly sized power supply	 Replace power supply with unit having sufficient voltage and current capacity to provide 24V under full load
Operates, but with abnormal speed variations	Speed setting too low	 Increase speed Replace INTEGRAMOTOR[™] with model having higher gear ratio
Operates, but won't stop with zero speed signal	Defective speed potentiometer	Replace speed potentiometer
	Incorrect wiring of speed potentiometer or remote speed signal	Check and correct connections
	MIN trim pot set too high	 Adjust MIN trim pot
Operates, but surges when started	Starting with speed signal set higher than zero	 Set speed pot or remote signal to zero before starting Add external circuitry to provide a ramping function (consult Bodine)
Operates, but won't maintain speed under load	Incorrectly sized power supply	 Replace power supply with unit having sufficient voltage and current capacity to provide 24V under full load
	INTEGRAMOTOR™ is overloaded	 Reduce load Replace INTEGRAMOTOR[™] with stronger model

FIGURE 14 - External "ramping circuit" for smooth 22B/SR acceleration (Refer to 5b on page 16)

DECLARATION OF CONFORMITY

We, the Bodine Electric Company, 201 Northfield Road, Northfield, Illinois, U.S.A., phone (773) 478-3515, fax (773) 478-3232, declare under our sole responsibility that the following products:

INTEGRAmoto[™] series Brushless DC Motors and Gearmotors with Integral Electronic Speed Controls. Product types:

22B2BEBL/SR (model 3802); 22B4BEBL/SR (model 3804); 22B2BEBL/SR-D3 (models N3826, 3827, N3828, 3829, and N3834); 22B2BEBL/SR-D4 (models N3835 and 3836); 22B3BEBL/SR-Z2 (models 3857, N3858, and N3859); 22B3BEBL/SR-Z3 (models 3860 and N3861); 22B2BEBL/SR-Z4 (models N3862 and 3863); 22B4BEBL/SR-3N (models N3865, 3866, N3867, 3868, and N3869).

Are in conformity with the following standards when installed in accordance with the supplied installation instructions:

EN	50081-1 / 01.92	Generic Emissions Standard for Heavy Industrial Environment
EN	50081-2 / 09.98	Generic Emissions Standard for Residential, Commercial, and Light Industrial Environments
	55022 / 09.98	Conducted and Radiated Emissions for Information Technology
	550227 09.50	Equipment (ITE), Class A & B
EN	55011 / 03.91	Conducted and Radiated Emissions for Industrial, Scientific and
		Medical Equipment (ISM), Class A & B
EN	50082-1 / 08.97	Generic Immunity Standard for Residential, Commercial, and Light
		Industrial Environments
EN	61000-6-2 / 09.99	Generic Immunity Standard for Heavy Industrial Environments
EN	61000-4-2 / 03.95	Immunity to Electrostatic Discharge
EN	61000-4-3 / 09.96	Immunity to Radiated Electromagnetic Field
EN	61000-4-4 / 03.95	Immunity to Electrical Fast Transients/Burst
EN	61000-4-5 / 03.95	Immunity to Surge/Transient Overvoltages
EN	61000-4-6 / 07.96	Immunity to Conducted Electromagnetic Disturbance

And therefore satisfy the conditions for the following EC directives:

EMC Directive (89/336/EEC, amended by 92/31/EEC and 93/68/EEC)

Signature:

Teny auchstetter

Full Name: Position: Date: Terrence J. Auchstetter Product Manager May 18, 2001

BODINE LIMITED WARRANTY

The Bodine Electric Company warrants all products it manufactures to be free of defects in workmanship and materials when used under Normal Operating Conditions and when applied in accordance with nameplate specifications.

When Bodine motors and gearmotors have been purchased with and used only with appropriately applied Bodine controls, this warranty shall be in effect for a period of twenty-four months from date of purchase or thirty months from date of manufacture, whichever comes first. Bodine motors and gearmotors used with non-Bodine controls and Bodine controls used with non-Bodine motors and gearmotors are covered by standard twelve-month warranty period.

The Bodine Electric Company will repair or replace at its option, any of its products, which has been found to be defective and is within the warranty period, provided that the product is shipped freight prepaid, with previous authorization, to Bodine Electric, or to the nearest Bodine Authorized Service Center. At its option, all return shipments are F.O.B. Bodine's plant or Authorized Service Center. Bodine is not responsible for removal, installation, or any other incidental expenses incurred in shipping the products to or from Bodine.

This warranty is in lieu of any other expressed or implied warranty - including (but not limited to) any implied warranties of merchantability and/or fitness for a particular use or purpose.

Bodine's liability under this warranty shall be solely limited to repair or replacement of the Bodine product within the warranty period and Bodine shall not be liable, under any circumstances, for any consequential, incidental or indirect damages or expenses associated with the warranted products.

Commutator and/or brush wear and its associated effects are normal occurrence and are not covered by this warranty unless otherwise agreed to by Bodine in writing.

Proof of purchase of motor or gearmotor and matching control as a system must be provided with any claim.

Bodine Electric Company 201 Northfield Road Northfield, Illinois 60093 U.S.A. TEL: (773) 478-3515 FAX: (773) 478-3232 www.bodine-electric.com

Literature No. 074 01034D (MW)